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Imposit ion of the virial theorem on Koopmans '  theorem permits the introduc- 
tion of some relaxation effect in the electronic cloud of atomic (less than 5%) 
or molecular (less than 1.3% for the systems studied) systems and a partition- 
ing of the ionization energy. The method is applied in some diatomic hydrides. 
It is observed that the imposition of the virial theorem improves the ionization 
of the innermost molecular orbitals significantly, while the improvement  is 
negligible for the outermost orbitals. The ionization energy is divided among 
three different terms that elucidate some aspects of  the nature of  the ionization 
process. 
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1. Introduction 

A simple way to estimate ionization energies (L) is to subtract the total energy 
of a neutral atom or molecule (E)  from the total energy of the created cation (E+): 

Ii= E + - E  (1) 

The large magnitude of each energy on the r ight-hand side of Eq. (1) makes it 
difficult to apply the equation when using the Har t ree -Fock-Roothaan  method. 
It is common practice to invoke Koopmans '  theorem [1] to approximate L: 

I, : - ~ ,  (2)  
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where el is the orbital energy from which an electron is removed. The deficiencies 
of Koopmans'  theorem are well known, and a set of methods [2-4] has been 
used to improve the calculated energies. These improvements are based on the 
inclusion of the relaxation and correlation effects. 

One simple way of improving Koopmans'  theorem is based on the virial theorem 
[5]. Koopmans'  theorem assumes that geometry and orbitals are "frozen" before 
and after ionization. This implies that even if the virial theorem is complied with 
for the starting wave function of the neutral molecule, it will be violated for the 
wave function of the ionized one. Scaling methods [5] applied in frozen cations 
of atomic systems have shown interesting results [6-8]. Besides the improvement 
of the ionization energies, this method permits the extraction of information on 
the electronic structure. It is also possible to verify that scaling introduces some 
relaxation (less than 5%) in electronic cloud. The quantity of reorganization 
introduced depends on the type of atoms as well as the atomic orbital. The 
objective of this work is to generalize the method [6] for polyatomic systems and 
to study its consequences in some diatomic hydrides. 

2. M e t h o d  

In this work, L6wdin's notation for scaled and unscaled energies is used. 
X(~/, R, 0) and X(1, p, 0) represent the energy X with and without scaling, 
respectively; R and 0 are the sets of /-bond lengths and K-bond angles of 
molecular systems; p is related to R by: 

p : ~ .  R (3) 

where rl is the scaling parameter for molecular systems. It can be calculated [5] 
from: 

l V(1, p,O)+~pt 'OV(I'p'O-)- ] 
Opt - -  "1 

T ] ~ _ - -  - . . . . . . . .  , 

2- r ( l ,  p, 0 ) + ~  Pl" O T - - ~ ,  p, 0).[ (4) 
1 Opl 3 

Here V and T are the potential and kinetic energies of the neutral molecular 
system in question. 

A general, situation would be that the initial and final molecular wave functions 
do not comply with the virial theorem. Then, the scaling method must be used 
twice, first for the neutral molecule and second for the frozen cation. Using the 
r/ of Eq. (4) we obtain the following scaled energies with any geometry [5]: 

E(rl, R, O) = T(rl, R, 0)+ V(rl, R, O) (5) 

7(71, R, 0) = ~7 2. r (1 ,  p, 0) = E r t  2" t~(1, p, 0) = E  t~(*/, R, 0) (6) 
i i 

v(~ ,  R, 0) = ~ .  V(1, p, 0) = ~ .  [E(1,  p, 0 ) -  T(1, p, 0)]. (7) 
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According to Nelander [9], the scaled energies in Eqs. (5), (6), and (7) satisfy 
the virial theorem for polyatomic molecules: 

0E(n, R, 0) 
E(n,  R, O) = - T (  7, R, O) -Y~ Pz" (8) 

t Opl 

It can be shown that the scaled orbital energy takes the form of equation: 

ei(7, R, 0) = T~- [ (7/-  1)" ti(l, p, 0)-~-,E'i(1, p, 0)], (9) 

where ti is the kinetic energy of the ith molecular orbital. Substitution of Eq. (9) 
into Eq. (2) provides corrected Koopmans' ionization energies. 

Cation energies can be derived using the scaled quantities of the neutral molecule: 

r+(  1, P, 0) = T(r/, R, 0) - ti(7, R, 0) =- T+(n, R, 0) (10) 

V+(1, p, 0) = E(r/, R, 0) - [ T+(% R, 0) + ei(~7, R, 0)] 

-= v+(7, R, 0). (11) 

A scaling parameter ~7 + for the cation can be calculated with the knowledge of 
p+(=R)  and substitution of Eqs. (10) and (11) into an equation for a cation 
similar to Eq. (4). Scaled energies for the cation, similar to those of Eqs. (5), (6), 
and (7), can readily be derived using 7 + and Eqs. (10) and (11). The scaled 
ionization energy I~(B +, ~/) can then be obtained by using the scaled energies of 
both the neutral and the cation as in Eq. (12): 

I~(n +, n )  + + + = Ei (71 , R , O) -E i (7 ,  R, O) (lZa) 

= ( n + - l )  �9 [ 7  + .  T(7,n,O)+E(n,n,O)] 

- n +. (n + -  1).  t~(7, R, 0 ) +  e,(7, R, 0). (lZb) 

Equation (12b) indicates that the scaled ionization energy can be calculated using 
only quantities available from the calculations of the neutral molecule. It is not 
necessary to carry out any Hartree-Fock calculation for the cation. It is, however, 
necessary to do some Hartree-Fock calculations at different bond distances for 
the neutral molecule to find 7 and ~7 + in Eq. (4), if the derivatives of V, T, V § 
and T + are calculated numerically. 

If  Eq. (8) and an equation for the cation similar to it are substituted in Eq. (12a) 
we have an alternative expression for Ii(7 +, 7): 

1,(7 +, rt) = t,(rl, R, 0) -[ T+(,q +, R +, 0) - T+(rt, R, 0)] 

[ ~176 0E(7,R,0)] (13) - Z  p;" p,- �9 
l Opt 

The right-hand side of Eq. (13) consists of three terms: the first is the kinetic 
energy of the ith molecular orbital, the second is a kinetic relaxation term (AKR), 
and the third is the net work (AW) exerted before and after ionization [10]. 
Equation (13) has an interpretative value of the ionization energy I~(~ § ~). The 
kinetic energy of molecular orbitals has been investigated, which has furnished 
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a set of information on the electronic structure [11-13]. The kinetic relaxation, 
as mentioned in the previous work [6], assumes a negative value (AKR<0)  if 
the electronic cloud expands and a positive value (AKR> 0) if it contracts on 
ionization. The work term provides information on the nature of the molecular 
orbital from which an electron is removed depending or. the value of A W. 
Following the criterion given in the literature [ 10], the molecular orbital is bonding 
(zXW< 0), non-bonding (AW = 0) or anti-bonding (AW> 0). 

The application of Eq. (12) or Eq. (13) needs care. The first is concerned with 
the geometry of the molecule. Equation (13) does not imply that the geometry 
of a neutral molecule is the same as that of an equilibrium molecule. If its 
geometry is that of equilibrium but the virial theorem is not complied with the 
scaling method changes the magnitude of the bond lengths through Eq. (3). To 
find the equilibrium geometry that satisfy the virial theorem, we must have 
V(1, p, 0), T(1, p, 0), Or(l, p, O)/Opt and OT(1, p, O)/Op~ at different p. Then we 
calculate ,? (Eq. 4) and the respective value of R (Eq. 3). With these parameters 
and the respective energies (Eqs. 5-7), the lengths and the scaled energies of the 
equilibrium bond are obtained by means of an interpolation technique. So the 
last term on the right-hand side of Eq. (13) vanishes. 

The second point to be mentioned is that the geometry of the scaled cation must 
be identical to the geometry of the scaled neutral molecule, R += Req, if the 
vertical ionization energies are desired. This is obtained through the unscaled 
energies of the cation from the scaled energies of the neutral mo!ecule, as shown 
in Eq. (10). The cations' energies are defined at the bond lengths R of the neutral 
molecule and not p, that is, p+= R. As in the neutral molecule, when V+(1, p, 0), 
T+( 1, O, 0) and its derivatives are known for different values of p+, it is possible 
to obtain a set of 7 + and R +. Since the cation geometry is identical to that of a 
neutral molecule, it is possible to find the value of ~/+ for which R + = Req through 
an interpolation technique. Vertical ionization energies may then be calculated 
with Eq. (12b). 

The actual calculations needed to obtain vertical ionization energies follow the 
steps detailed below: 

1. Carry out a set of Hartree-Fock calculations at different values for bond 
lengths (p). 

2. Find V(1, p, 0), T(1, p, 0) and calculate their first derivatives with respect to 
p. Calculate r/ for any value of p from Eq. (4). 

3. With the value of "0 for each p, determine the values of  scaled energies using 
Eqs. (5)-(7) and Eq. (9). 

4. Apply an interpolation technique to determine Req and the energies at Req. 

5. The unsealed cation energies can be obtained with Eqs. (10)-(11). These 
energies correspond to the cation geometry where p+ = R. 

6. With unsealed cation energies and the respective derivatives with respect to 
p+, determine ~q+ (equation similar to Eq. 4) and R + (Eq. 3). 



A modification of  Koopman ' s  theorem 201 

7. With the set of rt + and R +, determine the value of r/+ where R+=Req by 
interpolation technique. 

8. Calculate vertical ionization potential from Eq, (12b). 

9. If there is interest in interpretative option (Eq. 13) the following expressions 
may be used: 

AKR = [(,q+)2_ 1]. [ T(r/, R, 0) - ti(r/, R, 0)] (14) 

A W =  ~7+[(2 �9 r /+-  1)" ti(r/, R, 0)+ e,(r/, R, 0)] 

- [ 2 .  ( r t + ) 2 - r t + - l ]  �9 Y ( n , R , O ) - ( ~ ? ~ - l )  �9 E ( n , R , O  ). (15) 

This procedure is not restricted to vertical ionization potential. 

3. Results and discussion 

We have applied the procedure described in the preceding section for some 
diatomic hydrides of the second-row elements. Throughout this work we have 
used the ab initio SCF-MO method at the HFR level of approximation using 
Slater-type orbitals. Minimum basis set with Slater and Best atom atomic orbitals 
were used following the work of Ransil [14]. ~" = 1.2 was used for the hydrogen 
1 s orbital. Since the results of both types of atomic orbitals are very similar, only 
the data obtained with the Slater orbitals are presented. Table 1 lists the experi- 
mental and calculated bond lengths together with scaling parameters r/. A theoreti- 
cal bond length corresponds to the energy minimum of E(r/, R, 0) in Eq. (5). 

Table 2 compares ionization energies calculated by different methods. The value 
in the second column (IKeq) and the third one (IKc) are similar in most cases. 
The effect of scaling for neutral molecule only (Eq. 9) on Koopmans'  theorem 
is small. However, a detailed comparison between the IKc and IKeq values reveals 
that the corrections to Koopmans'  theorem through Eq. (9) slightly improve 
ionization energies to the right direction as seen especially in the cases of 30" and 
1 ~- of OH-. 

The ionization energies obtained by the virial theorem (4th column, IVT) are 
also similar to the corresponding values of IKeq and IKo with only exception for 

Table 1. Experimental (Rex) and calculated equilibrium bond 
lengths (Req) (atomic units) and scaling parameter (7/) 

Re x a Re q 

LiH 3.0147 3.02859 0.99533 
BH 2.3291 2.40872 0.99572 
CH + 2.1370 2.33172 1.00522 
O H -  1.8103 b 2.04248 0.97827 
HF 1.7331 1.81720 0.99160 

a Experimental data from [20] 
b Estimated value from [21] 
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Table 2. Ionization potentials in atomic units 

R. Custodio and Y. Takahata 

imex a iKeq b IK~ ~ IVT d IHAM/3 ~ Iex p 

LiH l~r 2.441 2.441 2.455 2.384 
20- 0.305 0.304 0.304 0.304 

BH 10- 7,659 7.658 7.679 7.506 
2~ 0.640 0.627 0.624 0.625 
3~r 0.327 0,326 0.328 0.325 

CH + 10- 11.965 11.949 11.914 11.698 
20- 1.273 1.238 1,235 1.236 
30- 0.887 0.870 0.866 0.866 

OH- 10- 19.584 19.644 19.880 19.517 
20- 0.599 0.582 0.629 0.614 
30- -0.075 -0.071 -0.033 -0.043 
1~" -0.259 -0.230 -0.166 -0.190 

H F  10- 26.121 26.129 26.239 25.787 
20- 1.461 1.447 1.465 1.450 
30- 0.568 0.554 0.567 0.559 
1 ~- 0.446 0.447 0.472 0.451 

11.738 - -  
1.153 
0.844 - -  

19.313 - -  
0.765 
0.228 
0.078 0.067 f 

25.458 25.51 g 
1.457 1.455 h 
0.728 0.731 i 
0.618 0.60 i 

a Koopmans' ionization potentials obtained using experimental bond lengths 
b Koopmans' ionization potentials obtained using equilibrium bond lengths 
~ Corrected Koopmans' ionization potentials (Eq. 9) 
d Ionization potentials obtained by virial theorem (Eq. 12b) 
e Ham/3 [17] ionization potentials 
f Experimental electron affinity [22] 
g Experimental ionization potential [23] 
h Experimental ionization potential [24] 
i Experimental ionization potential [25] 

lo- orbitals where an improvement  of the theoretical  values is noticeable.  The 

effect of  the scaling is most  significant in the inner  core orbitals and  is negligible 

for the valence orbitals. Similar observat ions have been  reported for atoms by 
Tal and Katriel  [8]. The ionizat ion energies of the valence electrons may be 

improved  if the inner  shells and  valence shells are scaled independen t ly ,  as in 

the case of  the scaled atoms in molecules (SAIM) theory [15, 16]. The IVTs of 
1 o- and 20- for H F  and  O H -  are in good agreement  with the exper imental  values 

a n d / o r  semiempir ical  H A M / 3  values [17]. Agreement  is not  so good for 3o- and  

1 ~r. The agreement  be tween IVT and H A M / 3  values is good for all the molecular  

orbitals in CH +. 

Table 3 shows the magni tude  of relaxat ion in t roduced  in the cat ion after applica- 
t ion of scaling. The value of the total reorganizat ion effect (AER) is considerable  
for inner  orbitals. For  other orbitals, the kinetic (AKR) and  potent ia l  (AVR) 
relaxations are significant, with the opposi te  signs that  cause the cancel la t ion 

result ing in the small total  relaxat ion effect. 

One  in terpre ta t ion  of the process of ioniza t ion  can be obta ined  from Eq. (13). 
The magni tude  of kinetic energy of each molecular  orbital  gives in format ion  
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Table3. Energy relaxation introduced in the cation through the virial theorem on 
removal of an electron from each orbital indicated in column two 
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AER ~ AKR b AVR c 

LiH 1~ -0.070176 1.199435 -1.269611 
2~ 0.000104 0.198230 -0.198125 

BH 1~ -0.173227 3.357234 -3.530461 
2~ 0.001020 0.499788 -0.498769 
3G -0.003303 0.596257 -0.599559 

CH + 1~ -0.216334 4.813302 -5.029635 
2~ 0.001093 0.555260 -0.554167 
3~ -0.000583 0.611179 -0.611762 

OH- 1~ -0.363789 8.199420 -8.563209 
2~ -0.014766 2.112288 -2.127053 
3~ -0.009558 1.727748 -1.737306 
1~ -0.023953 2.435784 -2.459737 

HF 1~ -0.452288 11.059470 -11.511758 
2~ -0.014678 2.629167 -2.643845 
3~ -0.008077 2.078366 -2.086443 
1~ -0.021121 2.865169 -2.886291 

a Total relaxation: AER = E+(~7 +, R +, 0) - E+(~7, R, 0) 
b Total kinetic relaxation: AKR= T+(~7 +, R +, 0) - T+(% R, 0) 
~ Total potential relaxation: AVR = V+(r/+, R +, 0) - V+(~/, R, 0) 

about  whether  the molecular  orbital is compact  or diffuse. Examples  can be seen 

in the isoelectronic molecules (BH, CH +) and  ( O H - ,  HF)  (Table 4). The larger 

the nuc lear  charge, the greater is the kinetic energy due to contract ion of the 
electronic cloud. 

The positive values for kinetic relaxat ion (AKR) in Table 3 show th~at format ion 

of the cat ion is fol lowed by contract ion of the electronic cloud. The contract ion 
cart also be seen from the fact that r l+>  1 for all molecules (Table 4). The greater 
the localizabil i ty of the molecular  orbital,  the greater is the magni tude  of the 
kinetic relaxation.  For lo- orbitals, the larger the nuclear  charge is, the smaller  

the scaling parameter .  The 2o- and  3o- orbitals present  an interest ing characteristic. 
From LiH to CH +, we see a decrease in ~7 + of 2~r and  30- with the increase in 

nuclear  charge. With the presence of ~r electrons there is an abrupt  increase in 
4- + 

. ~r Electrons present  the same behavior  as lo- electrons. The rl of  lo-'s are 

always larger than those of  valence orbitals where r /+~  1.0. The ti values of 1 o-'s 

are an order  of magn i tude  greater than those of the valence orbitals. This 
combina t ion  of facts causes a significant improvement  on 1 o- ioniza t ion  energies, 
leaving ioniza t ion  energies of the valence orbitals near ly  unaffected as has already 
been seen in Table 2. 

The work term in Table 4 would provide in format ion  about  the na ture  of the 
chemical  bond .  The negative quanti t ies of  the work term ( - A W )  are listed in 
Table 4 to al low direct compar i son  of them with overlap popula t ions  [18], which 
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Table4. Fragments of the scaled ionization energies, scaling parameter (~7 +) and overlap 
population (OPOP) 

ti ~ -AW b ~t + OPOP': 

LiH 1~ 3.565 0.0184 1.12823 0.00074 
2~ 0.394 0.1079 1.01301 0.37751 

BH 1~ 10.822 0.0411 1.11155 -0.00072 
2~ 0.773 0.3519 1.01023 0.36756 
3~ 0.894 0,0271 1.01225 -0.03189 

CH § 1~ 16.242 0.2689 1.10592 -0.00048 
2~ 1.367 0.4238 1.00759 0.22070 
3~ 1.240 0.2362 1,00832 0.05887 

OH- 1~ 28.132 -0.4166 1.08425 -0.00042 
2~ 2.693 0.0332 1.01454 0.17614 
3~ 1.640 0.0449 1.01173 -0.05908 
1~ 2.477 -0.2308 1.01669 - -  

HF 1~ 36.885 -0.0384 1.08469 -0.00043 
2~ 3.847 0.2330 1.01365 0.12947 
3~ 2.360 0.2772 1.01064 0.04907 
1~ 3.323 -0.0070 1.01478 - -  

Atomic units are used 
Kinetic energy of molecular orbital 

b Work term 
c Overlap population 

are given in the  last  co lumn.  A posi t ive  va lue  for  each molecu la r  orb i ta l  means  
bond ing  and  a negat ive  value ,  an t i -bonding .  Fo r  H F  and  LiH molecules  comple te  
agreement  of  signs is seen for  bo th  the work  terms and the over lap  popu la t ions .  

The two different  me thods  p red ic t  that  for  H F  the 10- is an t i bond ing  and  20, 30- 
are bonding .  Fo r  L iH 10- and  20- are bond ing .  The agreement  o f  signs for  the  
r ema inde r  o f  the molecu les  be tween  the work  terms and  over lap  popu la t i ons  is 
not  so g o o d  as the case of  H F  and  LiH. P r o n o u n c e d  d i sag reement  be tween  the 
work  terms and  the over lap  p o p u l a t i o n s  is seen in C H  § and  O H - .  Use of  a large 
basis  set, such as doub le  zeta  plus po la r iza t ion ,  for  these  ions wou ld  be requi red  
for  be t te r  agreements .  

C o m p l i a n c e  with the vir ia l  t heo rem does  not  imply  that  the wave  func t ion  remains  
self-consis tent .  Some au thors  [7, 19] have sugges ted  me thods  of  cor rec t ing  not  
only  the  energies  but  also the  LCAO coefficients o f  the wave funct ions  for  a tomic  
and  molecu la r  systems. C o m p a r i s o n  of  the a tomic  ion iza t ion  energies  ca lcu la ted  
by  I s iha ra  [7] and  Cus tod io  [6] shows no signif icant  improvement .  In  the 
molecu les  the  quant i ty  o f  the  wave func t ion  seems to be sensi t ive to t h e  AW 
term,  the r equ i rement  o f  the s imul taneous  compl i ance  with the vir ial  t heo rem 
and  se l f -cons is tency o f  the wave funct ion  is des i rable .  

In  conc lus ion ,  it is shown that  impos i t i on  o f  the  vir ial  t heo rem for bo th  neut ra l  
and  ca t ion  wi thin  the f r amework  o f  K o o p m a n s '  t heo rem (Eq. 13) s ignif icant ly 
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improves theoretical ionization energies of the innermost molecular orbitals, 
while the effect of the virial theorem is negligible for outermost orbitals. The 
ionization energy of ith molecular orbital can be broken down into three different 
terms (Eq. 13). The nature of the ith molecular orbital can be discussed with 
reference to the magnitude and signs of these terms. 
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