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Imposition of the virial theorem on Koopmans’ theorem permits the introduc-
tion of some relaxation effect in the electronic cloud of atomic (less than 5%)
or molecular (less than 1.3% for the systems studied) systems and a partition-
ing of the ionization energy. The method is applied in some diatomic hydrides.
It is observed that the imposition of the virial theorem improves the ionization
of the innermost molecular orbitals significantly, while the improvement is
negligible for the outermost orbitals. The ionization energy is divided among
three different terms that elucidate some aspects of the nature of the ionization
process.
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1. Introduction

A simple way to estimate ionization energies (I;) is to subtract the total energy
of a neutral atom or molecule { E) from the total energy of the created cation (E™):

IL=E"-E (1)

The large magnitude of each energy on the right-hand side of Eq. (1) makes it
difficult to apply the equation when using the Hartree- Fock-Roothaan method.
It is common practice to invoke Koopmans’ theorem [1] to approximate I;:

i g (2)
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where ¢; is the orbital energy from which an electron is removed. The deficiencies
of Koopmans’ theorem are well known, and a set of methods [2-4] has been
used to improve the calculated energies. These improvements are based on the
inclusion of the relaxation and correlation effects.

One simple way of improving Koopmans’ theorem is based on the virial theorem
[5]. Koopmans’ theorem assumes that geometry and orbitals are “frozen” before
and after ionization. This implies that even if the virial theorem is complied with
for the starting wave function of the neutral molecule, it will be violated for the
wave function of the ionized one. Scaling methods [5] applied in frozen cations
of atomic systems have shown interesting results [6-8]. Besides the improvement
of the ionization energies, this method permits the extraction of information on
the electronic structure. It is also possible to verify that scaling introduces some
relaxation (less than 5%) in electronic cloud. The quantity of reorganization
introduced depends on the type of atoms as well as the atomic orbital. The
objective of this work is to generalize the method [6] for polyatomic systems and
to study its consequences in some diatomic hydrides.

2. Method

In this work, Lowdin’s notation for scaled and unscaled energies is used.
X(m, R, 0) and X(1,p,8) represent the energy X with and without scaling,
respectively; R and @ are the sets of I-bond lengths and «-bond angles of
molecular systems; p is related to R by:

p=7n"R (3)

where 7 is the scaling parameter for molecular systems. It can be calculated [5]
from:

ovV(l,p,0
[ V(1,p,0)+F pr L0 8)
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Here V and T are the potential and kinetic energies of the neutral molecular
system in question.

A general situation would be that the initial and final molecular wave functions
do not co’mply with the virial theorem. Then, the scaling method must be used
twice, first for the neutral molecule and second for the frozen cation. Using the
n of Eq. (4) we obtain the following scaled energies with any geometry [5]:

E(n,R,0)=T(n, R,0)+V(n, R, 0) (5)
T(n,R,0) =77 T(1,p,0)=L 7" 1,(1,p,0) =L t:(n, R, 8) (6)

V(n,R,0)=n-V(l,p,0)=n-[E(1,p,0)-T(1,p,0)]. (7)
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According to Nelander [9], the scaled energies in Egs. (5), (6), and (7) satisfy
the virial theorem for polyatomic molecules:

3E(n, R, 8)

8
” (8)

E(ns Ra 0) = _T(T’a R9 9)—21: o

It can be shown that the scaled orbital energy takes the form of equation:

Ei(na R’ 0) =n- [(77 - l) ) ti(la P, 0)+Ei(15 P, 6)]7 (9)

where 1, is the kinetic energy of the ith molecular orbital. Substitution of Eq. (9)
into Eq. (2) provides corrected Koopmans’ ionization energies.

Cation energies can be derived using the scaled quantities of the neutral molecule:

T°(1,p,0)=T(n, R, 0)—1t,(n, R, 0)=T"(n, R, 0) (10)
V'(1,p,0)=E(n, R, 0)—[T"(n, R,0)+&(n, R, 8)]
=V(n,R,0). (11)

A scaling parameter n" for the cation can be calculated with the knowledge of
p (= R) and substitution of Eqs. (10) and (11) into an equation for a cation
similar to Eq. (4). Scaled energies for the cation, similar to those of Egs. (5), (6),
and (7), can readily be derived using n* and Egs. (10) and (11). The scaled
ionization energy I,(n™, n) can then be obtained by using the scaled energies of
both the neutral and the cation as in Eq. (12):

L(n",m)=E;{(n",R",0)—E(n, R,0) (12a)
=(n"=1)-[n"-T(n, R 0)+E(n, R 0)]
—n (0" =1) t(n,R,0)+e(n, R, 0). (12b)

Equation (12b) indicates that the scaled ionization energy can be calculated using
only quantities available from the calculations of the neutral molecule. It is not
necessary to carry out any Hartree-Fock calculation for the cation. It is, however,
necessary to do some Hartree-Fock calculations at different bond distances for
the neutral molecule to find n and 5" in Eq. (4), if the derivatives of V, T, V*
and T are calculated numerically.

If Eq. (8) and an equation for the cation similar to it are substituted in Eq. (12a)
we have an alternative expression for L(n™, n):

Ln",n)=t(n,R,0)—[T*(n*,R*,0)—T"(n, R, 0)]

+ 0E"(n*,R",0) dE(n, R, 8)
A2 ¥ N Ze .
! 9py ap:
The right-hand side of Eq. (13) consists of three terms: the first is the kinetic
energy of the ith molecular orbital, the second is a kinetic relaxation term (AKR),
and the third is the net work (AW) exerted before and after ionization [10].

Equation (13) has an interpretative value of the ionizatien energy I,(n*, n). The
kinetic energy of molecular orbitals has been investigated, which has furnished

(13)
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a set of information on the electronic structure [11-13]. The kinetic relaxation,
as mentioned in the previous work [6], assumes a negative value (AKR <0) if
the electronic cloud expands and a positive value (AKR > 0) if it contracts on
ionization. The work term provides information on the nature of the molecular
orbital from which an electron is removed depending or the value of AW.
Following the criterion given in the literature [ 10}, the molecular orbital is bonding
(AW < 0), non-bonding (AW =0) or anti-bonding (AW > 0).

The application of Eq. (12} or Eq. (13) needs care. The first is concerned with
the geometry of the molecule. Equation (13) does not imply that the geometry
of a neutral molecule is the same as that of an equilibrium molecule. If its
geometry is that of equilibrium but the virial theorem is not complied with the
scaling method changes the magnitude of the bond lengths through Eq. (3). To
find the equilibrium geometry that satisfy the virial theorem, we must have
V(1,p,0), T(1,p,08),dV(1,p,0)/0p, and dT(1, p, 8)/3p, at different p. Then we
calculate n (Eq. 4) and the respective value of R (Eq. 3). With these parameters
and the respective energies (Egs. 5-7), the lengths and the scaled energies of the
equilibrium bond are obtained by means of an interpolation technique. So the
last term on the right-hand side of Eq. (13) vanishes.

The second point to be mentioned is that the geometry of the scaled cation must
be identical to the geometry of the scaled neutral molecule, R = R,,, if the
vertical ionization energies are desired. This is obtained through the unscaled
energies of the cation from the scaled energies of the neutral molecule, as shown
in Eq. (10). The cations’ energies are defined at the bond lengths R of the neutral
molecule and not p, that is, p* = R. As in the neutral molecule, when V*(1, p, 9),
T7(1, p, 8) and its derivatives are known for different values of p", it is possible
to obtain a set of n* and R™. Since the cation geometry is identical to that of a
neutral molecule, it is possible to find the value of ™ for which R* = R, through
an interpolation technique. Vertical ionization energies may then be calculated
with Eq. (12b).

The actual calculations needed to obtain vertical ionization energies follow the
steps detailed below:

1. Carry out a set of Hartree-Fock calculations at different values for bond
lengths (p).

2. Find V(1,p,0), T(1, p, 0) and calculate their first derivatives with respect to
p. Calculate n for any value of p from Eq. (4).

3. With the value of 5 for each p, determine the values of scaled energies using
Eqgs. (5)-(7) and Egq. (9).

4. Apply an interpolation technique to determine R, and the energies at R,.

5. The unscaled cation energies can be obtained with Egs. (10)-(11). These
energies correspond to the cation geometry where p* = R.

6. With unscaled cation energies and the respective derivatives with respect to
p’, determine n* (equation similar to Eq. 4) and R* (Eq. 3).
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7. With the set of " and R, determine the value of n* where R” =R,, by
interpolation technique.

8. Calculate vertical ionization potential from Eq. (12b).

9. If there is interest in interpretative option (Eq. 13) the following expressions
may be used:

AKR=[(n")*=1]-[T(n, R, 0)—t;(n, R, 0)] (14)
AW=n"T2-n"=1)-t:(n, R, 0)+&(n, R, 0)]
-[2:(n")P-n"-1]1-T(n,R,0)—(n"—1)- E(n, R, 0). (15)

This procedure is not restricted to vertical ionization potential.

3. Results and discussion

We have applied the procedure described in the preceding section for some
diatomic hydrides of the second-row elements. Throughout this work we have
used the ab initio SCF-MO method at the HFR level of approximation using
Slater-type orbitals. Minimum basis set with Slater and Best atom atomic orbitals
were used following the work of Ransil [14]. { = 1.2 was used for the hydrogen
15 orbital. Since the results of both types of atomic orbitals are very similar, only
the data obtained with the Slater orbitals are presented. Table 1 lists the experi-
mental and calculated bond lengths together with scaling parameters 7. A theoreti-
cal bond length corresponds to the energy minimum of E(», R, 8) in Eq. (5).

Table 2 compares ionization energies calculated by different methods. The value
in the second column (IK.,) and the third one (IK.) are similar in most cases.
The effect of scaling for neutral molecule only (Eq. 9) on Koopmans’ theorem
is small. However, a detailed comparison between the 1K, and IK,, values reveals
that the corrections to Koopmans’ theorem through Eq. (9) slightly improve
ionization energies to the right direction as seen especially in the cases of 3¢ and
17 of OH™.

The ionization energies obtained by the virial theorem (4th column, IVT) are

also similar to the corresponding values of 1K, and IK, with only exception for

Table 1. Experimental (Rex) and calculated equilibrium bond
lengths (Req) (atomic units) and scaling parameter (7)

Rex : Req U
LiH 3.0147 3.02859 0.99533
BH 2.3291 2.40872 0.99572
CH" 2.1370 2.33172 1.00522
OH™ 1.8103° 2.04248 0.97827
HF 1.7331 1.81720 0.99160

# Experimental data from [20]
® Estimated value from [21]
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Table 2. Ionization potentials in atomic units

K, *? K, "° K. ° IvTe IHAM/3° 1,

LiH 1 2.441 2.441 2.455 2.384 — —

20 0.305 0.304 0.304 0.304 — —
BH 1o 7.659 7.658 7.679 7.506 — —

20 0.640 0.627 0.624 0.625 — —

3¢ 0.327 0.326 0.328 0.325 - —
CH" 1o 11.965 11.949 11.914 11.698 11.738 —

20 1.273 1.238 1.235 1.236 1.153 —

3o 0.887 0.870 0.866 0.866 0.844 —
OH~ 10 19.584 19.644 19.880 19.517 19313 —

20 0.599 0.582 0.629 0.614 0.765 —

30 —0.075 -0.071 -0.033 ~0.043 0.228 —

1w —0.259 ~0.230 -0.166 -0.190 0.078 0.067°
HF 1o 26121 26.129 26.239 25.787 25.458 25.518

20 1.461 1.447 1.465 1.450 1.457 1.455°

3o 0.568 0.554 0.567 0.559 0.728 0.731°

lr 0.446 0.447 0.472 0.451 0.618 0.60"

2 Koopmans’ ionization potentials obtained using experimental bond lengths
® Koopmans’ ionization potentials obtained using equilibrium bond lengths
¢ Corrected Koopmans’ ionization potentials (Eq. 9)

9 Ionization potentials obtained by virial theorem (Eq. 12b)

¢ Ham/3 [17] ionization potentials

f Experimental electron affinity [22]

2 Experimental ionization potential [23]

' Experimental ionization potential [24]

i Experimental ionization potential [25]

1o orbitals where an improvement of the theoretical values is noticeable. The
effect of the scaling is most significant in the inner core orbitals and is negligible
for the valence orbitals. Similar observations have been reported for atoms by
Tal and Katriel [8]. The ionization energies of the valence electrons may be
improved if the inner shells and valence shells are scaled independently, as in
the case of the scaled atoms in molecules (SAIM) theory [15, 16]. The IVTs of
1o and 20 for HF and OH™ are in good agreement with the experimental values
and/or semiempirical HAM/3 values [17]. Agreement is not so good for 3o and
147. The agreement between IVT and HAM/ 3 values is good for all the molecular
orbitals in CH".

Table 3 shows the magnitude of relaxation introduced in the cation after applica-
tion of scaling. The value of the total reorganization effect (AER) is considerable
for inner orbitals. For other otbitals, the kinetic (AKR) and potential (AVR)
relaxations are significant, with the opposite signs that cause the cancellation
resulting in the small total relaxation effect.

One interpretation of the process of ionization can be obtained from Eq. (13).
The magnitude of kinetic energy of each molecular orbital gives information
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Table 3. Epergy relaxation introduced in the cation through the virial theorem on
removal of an electron from each orbital indicated in column two

AER? AKR" AVR®
LiH 1o ~0.070176 1.199435 —1.269611
2 0.000104 0.198230 -0.198125
BH lo -0.173227 3.357234 ~3.530461
20 0.001020 0.499788 —0.498769
3o —0.003303 0.596257 ~0.599559
CH* lo —0.216334 4.813302 —5.029635
20 0.001093 0.555260 —0.554167
3o —0.000583 0.611179 —0.611762
OH™ lo —-0.363789 8.199420 —8.563209
20 —0.014766 2.112288 —2.127053
3o —0.009558 1.727748 -1.737306
17 —0.023953 2.435784 ~2.459737
HF lo —0.452288 11.059470 —11.511758
20 —0.014678 2.629167 —2.643845
3o —0.008077 2.078366 ~2.086443
17 —-0.021121 2.865169 —2.886291

2 Total relaxation: AER=E* (", R*,0)—E*(n, R, 0)
® Total kinetic relaxation: AKR = T (5", R*,0)~ T*(7, R, 8)
© Total potential relaxation: AVR= V*(n*, R*, 8)— V'(7, R, 0)

about whether the molecular orbital is compact or diffuse. Examples can be seen
in the isoelectronic molecules (BH, CH") and (OH™, HF) (Table 4). The larger
the nuclear charge, the greater is the kinetic energy due to contraction of the
electronic cloud.

The positive values for kinetic relaxation (AKR) in Table 3 show that formation
of the cation is followed by contraction of the electronic cloud. The contraction
can also be seen from the fact that " > 1 for all molecules (Table 4). The greater
the localizability of the molecular orbital, the greater is the magnitude of the
kinetic relaxation. For 1o orbitals, the larger the nuclear charge is, the smaller
the scaling parameter. The 20 and 3o orbitals present an interesting characteristic.
From LiH to CH™, we see a decrease in n~ of 20 and 3o with the increase in
nuclear charge. With the presence of o electrons there is an abrupt increase in
n". 7 Electrons present the same behavior as 1o electrons. The " of 1o7s are
always larger than those of valence orbitals where " = 1.0. The ¢, values of 17s
are an order of magnitude greater than those of the valence orbitals. This
combination of facts causes a significant improvement on 1o ionization energies,
leaving ionization energies of the valence orbitals nearly unaffected as has already
been seen in Table 2.

The work term in Table 4 would provide information about the nature of the
chemical bond. The negative quantities of the work term (—AW) are listed in
Table 4 to allow direct comparison of them with overlap populations [18], which
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Table4. Fragments of the scaled ionization energies, scaling parameter (") and overlap
population (OPOP)

t;® ~AW® nt OPOP*
LiH 1o 3.565 0.0184 1.12823 0.00074
20 0.394 0.1079 1.01301 0.37751
BH 1o 10.822 0.0411 1.11155 -0.00072
20 0.773 0.3519 1.01023 0.36756
3o 0.894 0.0271 1.01225 —0.03189
CH* 1o 16.242 0.2689 1.10592 —0.00048
20 1.367 0.4238 1.00759 0.22070
30 1.240 0.2362 1.00832 0.05887
OH~ 1o 28.132 —0.4166 1.08425 -0.00042
20 2.693 0.0332 1.01454 0.17614
3o 1.640 0.0449 1.01173 —0.05908
17 2.477 —0.2308 1.01669 —
HF 1o 36.885 —0.0384 1.08469 —0.00043
20 3.847 0.2330 1.01365 0.12947
3o 2.360 0.2772 1.01064 0.04907
1ar 3.323 ~0.0070 1.01478 —

Atomic units are used

? Kinetic energy of molecular orbital
® Work term

¢ Overlap population

are given in the last column. A positive value for each molecular orbital means
bonding and a negative value, anti-bonding. For HF and LiH molecules complete
agreement of signs is seen for both the work terms and the overlap populations.

The two different methods predict that for HF the 1o is antibonding and 20, 3o
are bonding. For LiH 10 and 20 are bonding. The agreement of signs for the
remainder of the molecules between the work terms and overlap populations is
not so good as the case of HF and LiH. Pronounced disagreement between the
work terms and the overlap populations is seen in CH* and OH™. Use of a large
basis set, such as double zeta plus polarization, for these ions would be required
for better agreements.

Compliance with the virial theorem does not imply that the wave function remains
self-consistent. Some authors [7, 19] have suggested methods of correcting not
only the energies but also the LCAO coefficients of the wave functions for atomic
and molecular systems. Comparison of the atomic ionization energies calculated
by Isihara [7] and Custodio [6] shows no significant improvement. In the
molecules the quantity of the wave function seems to be sensitive to the AW
term, the requirement of the simultaneous compliance with the virial theorem
and self-consistency of the wave function is desirable.

In conclusion, it is shown that imposition of the virial theorem for both neutral
and cation within the framework of Koopmans’ theorem (Eq. 13) significantly
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improves theoretical ionization energies of the innermost molecular orbitals,
while the effect of the virial theorem is negligible for outermost orbitals. The
ionization energy of ith molecular orbital can be broken down into three different
terms (Eq. 13). The nature of the ith molecular orbital can be discussed with
reference to the magnitude and signs of these terms.
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